

論点1

- → 日本のFlexibilityの現状は?
- → 再エネ大量導入に向けて、どのような展開を見据えるべきか?

関西電力送配電

再エネ大量導入を見据えた現状 ~想定される課題と現在の解~ 2

TSO視点

基幹系・全系レベルで再エネ特性への対応が必要

- 間欠性:スケール (線路単位、地域単位、ノード単位等) によって異なる課題
 - 周波数維持や電圧、系統安定性なども課題
- 時限性:いわゆる"ダックカーブ"の課題
 - 周波数維持や電圧、系統安定性なども課題
- 偏在性:特定の系統にのみ生じる系統混雑の課題
- ・基本は調整力による対応
- Flexibilityの概念に近いの はノンファーム接続くらいか
- → 現在の解: 調整力電源による調整、ノンファーム接続、N-1電制、出力抑制···

DSO視点

6kVクラスの再エネへの対応・メッシュ状系統を前提とした検討が必要

- 間欠性:電圧変動(過昇)、系統の混雑管理が課題
- 時限性: (同上)
- 偏在性: (同上)

Flexibility的要素は、 ほぼ存在しない

→ 現在の解;

電圧変動:電圧監視と電圧調整器による制御

系統混雜:系統切り替え、系統增強、出力抑制

カーボンニュートラル実現レベルの再エネ大量導入で想定される課題 3

TSOが採る対策・行動(想定)

- 周波数: 全系レベルで再エネの間欠性に追随、対応

- 電圧・安定度: 線路や地域単位でFlexibilityを活用

- 系統混雑: (同上)

DSOが採る対策·行動(想定)

- 電圧: 街区レベルや配電線区間単位でFlexibilityを活用

- 系統混雑: (同上)

Flexibility Resourceの 必要量が確保できない恐れ

TSOとDSOの視点で、求めるFlexibilityが若干異なる

- ・Flexibilityが必要な地域の違い
- ・必要なFlexibilityの方向(上げ/下げ)と大きさの違い
- ・Flexibilityが必要な時間の違い

TSO/DSO間での Flexibilityのバッティングが 生じる恐れ

課題①

TSO/DSO間で、Flexibilityをどのように調整して活用するか?

課題②

再エネ"大量"導入に対して十分なFlexibility Resourceをどう確保するか?

課題③

必要な地域・locationで必要な量のFlexibility Resourceをどう確保するか?

課題①: TSO/DSO間の調整

- TSO/DSO間の連携強化
- Flexibilityの"見える化"、統合プラットフォームなどの環境整備
- → データ利活用や"プラットフォーム"の議論など、関連する動きはある

課題②: 十分なFlexibility Resourceの確保

- 現時点からFlexibility Resource活用の意識づけと利活用促進
- → 調整力市場へのDRの参画や、アグリゲーターの活性化など動きはある

課題③: 必要な地点での必要な量のFlexibility Resourceの確保

- 再工ネ適地や系統の脆弱箇所の見極め(Flexibilityが必要な箇所の見極め)
- Flexibility Resourceの対象資源の拡大と必要な地域への設置誘導
- → 現時点で具体的な解や動きが見当たらない…

Theme 1

- → What about the current status of Flexibility in Japan?
- → What kind of evolution should we consider in terms of mass deployment of RES in Japan?

KANSAI Transmission and Distribution

TSO point of view

Required to cope with RES as bulk system/whole system

- Intermittency challenges varies in terms of scale, location, area, nodes maintain frequency, voltage problem and system stability are also challenges
- Time domain matter
 "Duck Curb" problem
 maintain frequency, voltage problem and system stability are also challenges
- Localization congestion problems on specific lines/areas only
- Basically frequency adjustment only
- similar to Flexibility is only
- → Current Solution; Non-firm.

 adjustment power, non-firm connection, N-1 restriction, generation suppression…

DSO point of view

Taking 6kV class RES and mesh-like grid into consideration

- Intermittency: Voltage and congestion problems
- Time domain matter: (the same as above)
- Localization: (the same as above)

→ Current Solution;

Voltage fluctuation: SCADA and voltage control
Congestion: grid switching, reinforcement, generation suppression

There is nothing about "Flexibility".

Action on TSO side

- For frequency: Cope with intermittency as whole system level
- For voltage/stability: Utilize Flexibility on lines/areas
- For Congestion: (the same as above)

Action on DSO side

- For Voltage: Utilize Flexibility on city block/feeder
- For Congestion: (the same as above)

Concern; Lack of volume

Required Flexibility is different from TSO & DSO.

- Required location/area
- Required direction (up/down) and volume
- Required time of the day/week

Concern; Conflict about Flexibility between TSO & DSO

Challenge-1

How to manage/utilize Flexibility between TSO & DSO?

Challenge-2

How to ensure enough volume of Flexibility Resources?

Challenge-3

How to ensure Flexibility Resources on the required location/area?

Challenge-1: Harmonization between TSO & DSO

- Strengthen relationship between TSO & DSO
- Ensure visibility of Flexibility, set up Integrated Platform
- → Related/similar movement, such as Data Utilization, "Platform", etc.

Challenge-2: Ensure enough volume of Flexibility Resource

- Enlightenment/Enhancement of Flexibility Resource utilization
- → Related movement, such as DR participation to Adjustment Market, growing Aggregators

<u>Challenge-3</u>: Ensure Flexibility Resource on required location/area

- Find out required location/area, such as RES favorable are, vulnerable point of grid, etc.
- Expand Flexibility Resource, Induction resources to required location/area
- → There is no comprehensive solution and actual movement…